Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

نویسندگان

  • Najat Al-Bashir
  • Wilfredo Mellado
  • Marie T. Filbin
چکیده

Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG's inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition.

Myelin-associated glycoprotein (MAG) is a sialic acid-binding Ig-family lectin that functions in neuronal growth inhibition and stabilization of axon-glia interactions. The ectodomain of MAG is comprised of five Ig-like domains and uses neuronal cell-type-specific mechanisms to signal growth inhibition. We show that the first three Ig-like domains of MAG bind with high affinity and in a sialic ...

متن کامل

Myelin-associated Glycoprotein Interacts with Neurons via a Sialic Acid Binding Site at ARG118 and a Distinct Neurite Inhibition Site

Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity....

متن کامل

The inhibition site on myelin-associated glycoprotein is within Ig-domain 5 and is distinct from the sialic acid binding site.

Myelin-associated glycoprotein (MAG) is a potent inhibitor of axonal regeneration. It contains five Ig-like domains and is a sialic binding protein. Previously, we showed that the sialic acid binding site on MAG maps to arginine 118 in Ig domain 1 (Kelm et al., 1994). However, sialic acid binding was neither necessary nor sufficient for MAG to bring about inhibition of neurite outgrowth. Consis...

متن کامل

Myelin-Associated Glycoprotein Interacts with the Nogo66 Receptor to Inhibit Neurite Outgrowth

Myelin inhibitors of axonal regeneration, like Nogo and MAG, block regrowth after injury to the adult CNS. While a GPI-linked receptor for Nogo (NgR) has been identified, MAG's receptor is unknown. We show that MAG inhibits regeneration by interaction with NgR. Binding of and inhibition by MAG are lost if neuronal GPI-linked proteins are cleaved. Binding of MAG to NgR-expressing cells is GPI de...

متن کامل

The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors.

Neuronal Nogo-66 receptor 1 (NgR1) has been proposed to function as an obligatory coreceptor for the myelin-derived ligands Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and myelin-associated glycoprotein (MAG) to mediate neurite outgrowth inhibition by these ligands. To examine the contribution of neuronal NgR1 to outgrowth inhibition, we used two different strategies, genetic ablation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016